VPC PEERING CONNECTIONS

Mike Macdonald




CONTENTS

O 1 1= PP PP PPP 2
D (o] =T T 14 o o T USRS 3
3. AWS CloUAFOrMAtioN ..ceieiiiiiiieiiiie ettt e et e ettt esba e e sbaeesabeeesbteessbeeesabeeessseeenns 4
 J0 A @ ¢ <= [0 =38 01U Vo ok PR 4
3.2 TN O QA WY .. e 5
3.3 PeEIING CONMNECTIONS .. 5
Bi4  SUDBNEES oottt e et e e ettt e h b e e e he e e e bt e e sbeeeebeeenareeas 6
3.5 SECUIITY GIOUPS i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aeaeaeaaaeens 7
3.6 LAUNCHING INSTANCES....uiiiiiiei ettt e e e e e e e e e e e et be e e e e e e e e e s s s assaeeeeeaeeeensnnsrrrareeeaeens 8
3.7 ROUTE TABIES .ot 9
3.8 L0 U 1 o 10 1 USRS 10
B 4 T o 1 €Yo LU RPRRRRN 11
4.1  First file that installs and runs second file on each server .........ccccoceriiiniiincnici e, 11
4.2 Second file that PINES ACKH SEIVET ......uueeii i e e e e e e e nrrraeees 12
5. Powershell COMMANGS........oooiiiiiiiee e et 14
T © 1 U o1 U SRRt 15
6.1 Everything Working as @XPECLEA........iiiv ittt e e et e e e e e e e eentrrreeeeeeeeas 15
6.2 Causing issues intentionally to show proof of CONCEPL.....ccvveeeviiiiiiiiiiie e, 20
T N o o o] [ ¥ =4F= T o TR 1 0 3 - 1 Lol <RSPt 20
6.2.2 Deleting @ PEEriNg CONNECTION . ...ccc et e e e e e e e s e e e e e e e s eeanbrraeeeeeeeeas 21

2 € 4Tl [V Y[ o I PP PRTRN 23



1. BRIEF

The brief was to complete a proof of concept of the non-transitive nature of VPC Peering Connections.
Create four separate VPCs each with an EC2 instance in it. Include in the first VPC a public subnet with a
Bastion Host. SSH into each instance from the Bastion Host and then systematically ping each of the
instances to prove the use of the peering connections.

| then chose to extend the brief in two ways — firstly deploy the infrastructure as code (l1aC) using AWS
CloudFormation. Secondly to write a python script to automatically SSH into each machine and then ping
all of the others, and print if it had been successful or not.

a ty Zone (eu-\ i
Public subnet
(10.0.2.0/24)
Bastion Host '
18.169.184.160 H
H v Availability Zone (eu-wesi-2a)
Private subnet Private subnet
(10.0.1.0/24) : ! (10.1.1.0/24)
Production Server Dev. Server
10.0.1.249 : : 10.1.1.29
\\. ﬁ
Availability Zone (eu-west-2a) | i Availability Zone (eu-west-2a)
Private subnet Private subnet
(10.3.1.0/24) H i (10.2.1.0/24)
Shared Server Test Server
10.31.22 : i 10.2.1.129




2. EXPLANATION

VPCs are unable to communicate with one another. As such there are two main methods to connect VPCs
together. You can use either a transit gateway or VPC peering connections. This project uses Peering
Connections to connect the VPCs together.

It’s critical when planning an architecture that will have multiple VPCs to ensure that their CIDR ranges
don’t overlap. If they do, cross VPC communication will not be possible. As peering connections are non-

transitive each VPC needs its own peering connection with each of the other VPCs. The number of peering

. ST . -1 .
connections required is given by the formula number of connections = % (where n is the number

of VPCs). Therefore for 4 VPCs, 6 peering connections are required.

Number of No of Peering Reglon
VPCs Connections Required
3 3
4 6
5 10
6 15
7 21
8 28
9 36

Peering
1:3

Not only do the peering connections need

to be created but so do the appropriate
security groups of each instance and routes

in each route tables to allow pinging from

each of the other instances.



3. AWS CLOUDFORMATION

AWS CloudFormation allows the deployment of AWS infrastructure using code in either YAML or JSON
format.

3.1 CREATING FOUR VPCS

Four separate VPCs needed creating each with different CIDR blocks to allow for cross VPC communication.

VPC1-10.1.0.0/16
VPC2 -10.2.0.0/16
VPC3 -10.3.0.0/16
VPC4 -10.4.0.0/16

: 10.1.0.0/16
: true
: true

: Name
: Vpcl-Production

: 10.2.0.0/16
: true
: true

: Name
Vpc2-Development

: 10.3.0.0/16
: true
: true

: Name
: Vpc3-Testing

: 10.4.0.0/16
: true
: true

: Name
: Vpc4d-Shared




3.2 INTERNET GATEWAY

To allow SSH into a Bastion Host in a public subnet the subnet must have internet access and therefore the
VPC that contains the Bastion Host needs an Internet Gateway attached to it. The Internet Gateway needs
creating and then attaching to the chosen VPC.

AWS::EC2::InternetGateway

3.3 PEERING CONNECTIONS

Six peering connections are required to enable communication between all 4 VPCs. For brevity I've only
shown the first three here (each from VPC 1 to the other three VPCs) but the other three are identical just
connecting 2-3, 2-3 and 3-4.

!GetAtt
!GetAtt

Name
Peeringl-2

GetAtt Vpc3.VpcId

|
!GetAtt Vpcl.VpcId

Name
Peeringl-3




3.4 SUBNETS

Each instance needs to be in a subnet within the VPC. VPC1 will contain a public and a private subnet. Only
the Bastion Host will be in the public subnet as that needs access to the internet (via the internet gateway)
to enable SSH. All the other instances (Production Server, Dev Server, Shared Server and Test Server) will

be in private subnets, one in each VPC.

'Ref Vpcl
10.1.1.0/24
eu-west-2a
true

Name
PublicSubnetl

'Ref Vpcl
10.1.2.0/24
eu-west-2a
false

Name
PrivateSubnetl

'Ref Vpc2
10.2.1.0/24
eu-west-2a
false

Name
PrivateSubnet?2

'Ref Vpc3
10.3.1.0/24
eu-west-2a
false

Name
PrivateSubnet3

'Ref Vpc4
10.4.1.0/24
eu-west-2a
false

Name
PrivateSubnetd




Each subnet has its own CIDR range. Both Public Subnet 1 and Private Subnet 1 are in VPC 1 and therefore
have CIDR ranges within the VPC1 CIDR range. These are all launch in eu-west-2a (London)

Public Subnet 1 -10.1.1.0/24

Private Subnet 1 —10.1.2.0/24
Private Subnet 2 — 10.2.1.0/24
Private Subnet 3 —-10.3.1.0/24
Private Subnet 4 — 10.4.1.0/24

3.5 SECURITY GROUPS

When each instance is launched, it needs a security group assigned to it that will allow appropriate data
ingress only on the ports desired. The Bastion Host needs SSH permissions (TCP — Port 22) to connect over
the internet. This has been allowed from anywhere for the sake of this project but for security the IP
addresses should be limited. All of the instances need to be allowed to be pinged (ICMP) from any of the
VPCs and SSH just from the Bastion Host. Security groups are not transferrable between VPCs hence
needing a security group for the instance in each VPC despite them being identical.

icmp
g =l
=1
10.0.0.0/8
g WCP

« 29
. L4

: 0.0.0.0/0

: Name
SecurityGroupPingl

:SecurityGroup

~ Security GroupPing?2
Security group to allow ping all direc

icmp
3 =1
=1
10.0.0.0/8
3 wCP

SecurityGroupPing?2




| have only shown two security groups (one in VPC1 and one in VPC2) but there are two more for VPC3 and
4.

3.6 LAUNCHING INSTANCES

Five EC2 t2.micro instances will be launched for this project. One Bastion Host in the public subnet and
then four other instances in each of the separate VPCs private subnet. These instances are all launched
from a “Launch Template”. The Launch Template defines the size of the instances (T2-Micro) and the AMI
of a free-tier Linux machine specifically in eu-west-2. These could be done with parameters and mapping to
enable this to be easily done in other regions.

TestLaunchTemplate

t2.micro
ami-0d76271a8al525cla

!Ref MyLaunchTemplate
!GetAtt MyLaunchTemplate.LatestVersionNumber
!GetAtt PublicSubnetl.SubnetId
10.1.1.249
Bastion-Key-Pair

- !GetAtt BastionSecurityGroupPingl.GroupId

Name
Bastion Host

5}

eu-west-2a
!Ref MyLaunchTemplate
!GetAtt MyLaunchTemplate.LatestVersionNumber
!GetAtt PrivateSubnetl.SubnetId
2 .249
Servers-Key-Pair

urityGroupPingl.GroupId

Name
Production Server




Shown above is only the Bastion Host and Production Server (in VPC1’s Private Subnet) but three other
instances were also created in each of the other VPC's private subnets using the same settings (apart from
the private IP addresses).

NOTE: It’s important to note here that the Bastion Host and the Servers have Key Pairs. This is the only part
of the process that has not been automated and was done in advance. | created a Bastion Host Key Pair
and a Server Key Pair. The Bastion Host Key Pair is what | use to SSH into the Bastion Host from a local
machine over the internet and the Server Key Pair is copied onto the Bastion Host using PowerShell to
allow it to SSH into all of the other servers.

3.7 ROUTE TABLES

Each subnet needs a route table that defines where traffic is routed. In CloudFormation this is a three step
process.

1. Create the route table
Associate the route table with a subnet
Create the routes within the route table

Create the Route Tables - PublicSubnet1RouteTable:

!GetAtt Vpcl.VpcId

: Name
: PublicSublRouteTable

Associate the route table with a subnet - PublicSubnet1RouteTableAssociation:

: AWS::EC2::SubnetRouteTableAssociation

!GetAtt PublicSubnetlRouteTable.RouteTableId
!GetAtt PublicSubnetl.SubnetId

After these two steps we need to define the routes. This is how the data will around the network.

1. Internet access for the public subnet via the internet gateway
2. Connect each VPC using the previously created peering connections

This is all of the routes required for this project.



AWS: :EC2: :Route

!GetAtt PublicSubnetlRouteTable.RouteTableId
0.0.0.0/0

!GetAtt VpclIgw.InternetGatewayId

C2::Route

!GetAtt PublicSubnetlRouteTable.RouteTableId
: !GetAtt Vpc2.CidrBlock
!GetAtt PeeringConnectionlto2.Id

::EC2: :Route

!GetAtt PublicSubnetlRouteTable.RouteTableld
: !GetAtt Vpc3.CidrBlock
!GetAtt PeeringConnectionlto3.Id

S::EC2::Route

!GetAtt PublicSubnetlRouteTable.RouteTableId
: !GetAtt Vpc4.CidrBlock
!GetAtt PeeringConnectionlto4d.Id

This process is then repeated (excluding the IGW route) for VPC-2, 3 and 4 to allow each VPC to connect to
the others.

3.8 OUTPUTS

Finally as | need to SSH into the Bastion Host in order to ping the instances | ensured that CloudFormation
would output the public IP Address of the Bastion Host to make that process easier.

stionHost.PublicIp

10



4. PYTHON CODE

Although it would be easy to SSH manually into each server from the Bastion Host and then manually ping
each instance | wanted the extra challenge of writing a script in python that would automate the process.

This involved two separate python files. The first is designed to iterate through the list of private IP
addresses (hardcoded in) of each server and do two things. Firstly it secure copies (using SCP) the second
python file onto each server and SSH into the machine and run the second python file. If either of those
stages fail, the code sets the key of the IP address into a dictionary and then the value of fail. If it succeeds
then that is added instead.

When the second python file is run on each server, this iterates through a list of IP address and attempts to
ping each one. It the writes the results to a dictionary and prints the dictionary upon completion.

4.1 FIRST FILE THAT INSTALLS AND RUNS SECOND FILE ON EACH SERVER

This is the first python code:

[O)S]

run_ping on_all instances () :
ipaddresses = {

Ss ipaddresses:
scp result = os.system(

scp_result !=
results dict[ipaddress]

ssh result

ssh result !=

results dict[ipaddress]

results dict[ipaddress]

(
results dict:
ddresses [ipaddress] ipaddress

(

run ping on all instances|()

11



4.2 SECOND FILE THAT PINGS EACH SERVER

12



0s
socket
SYS

pingallinstances() :
hostname = socket.gethostname ()
host ipaddress = (socket.gethostbyname (hostname) )

ipaddresses = {

passfaildict = {}
success

)
host ipaddress
ipaddresses[host ipaddress]

( )
()
()
sys.stdout.flush ()
ipaddress ipaddresses:
( ipaddresses[ipaddress]
sys.stdout.flush ()
individual result = os.system/( ipaddress
()
( )
()
sys.stdout.flush ()
individual result ==
passfaildict[ipaddress]

passfaildict[ipaddress]
success =
[4] s
()
(
success:
( ipaddresses[host ipaddress]

)

( ipaddresses[host ipaddress]
host ipaddress )

ipaddress passfaildict:

( ipaddresses|[ipaddress] ipaddress
passfaildict[ipaddress] )

(
L4018
()

success:

(pingallinstances ())




5. POWERSHELL COMMANDS

After CloudFormation has completed building the infrastructure it is possible to SSH into the Bastion Host
from a local machine using the Bastion Host Key Pair as its identity (see note in 3.6 regarding the key pairs).

1. Set avariable in PowerShell for the public IP address of the Bastion Host (found in the output of the
CloudFormation stack).

S{bastion-host-ipaddress} = "Public-ip-Output-Here'

2. Set avariable for the location of the Bastion Host Key Pair.

S{bastion-host-keypair} = ".\Downloads\Bastion-Key-Pair.pem'

3. Create a folder on the Bastion Host for the python files to be stored in.

sh -i S{bastion-host-keypair} ec2-user@S{bastion-host-ipaddress} mkdir ./pythonfiles

4. Secure copy (SCP) local python files into newly created pythonfiles folder on Bastion Host.

scp -i S{bastion-host-keypair} .\local_path_of two_python_files\*.py" ec2-user@S{bastion-host-

ipaddress}:./pythonfiles

5. Secure copy Server Key Pair from local host onto Bastion Host so that it will be able to access each
of the servers. This copies the private key into a file called id_rsa which is the default file used for
authentication.

scp -i S{bastion-host-keypair} .\Downloads\Servers-Key-Pair.pem ec2-user@S${bastion-host-

ipaddress}:~/.ssh/id_rsa

6. Change the permissions of the id_rsa file so that only the user can read and write and that the
group and other can no read, write or execute. This is required to use id_rsa as the identity.

ssh -i S{bastion-host-keypair} ec2-user@S{bastion-host-ipaddress} chmod 600 ~/.ssh/id_rsa

7. Finally SSH onto the Bastion Host and using python3 run the “Launch_Ping_All_Instances.py” file.
This then begins the pinging process.

ssh -i S{bastion-host-keypair} ec2-user@S${bastion-host-ipaddress} python3

~/pythonfiles/Launch_Ping_All_Instances.p

14


mailto:ec2-user@$%7bbastion-host-ipaddress%7d:./pythonfiles/
mailto:ec2-user@$%7bbastion-host-ipaddress%7d:./pythonfiles/

6. OUTPUT

6.1 EVERYTHING WORKING AS EXPECTED

Below is the output that will be seen in PowerShell as everything is working as expected and all instances
can ping all others via each peering connection.

Pinging: Production Server (VPC1)

PING 10.1.2.249 (10.1.2.249) 56(84) bytes of data.

64 bytes from 10.1.2.249: icmp_seq=1 ttl=127 time=0.019 ms
64 bytes from 10.1.2.249: icmp_seq=2 ttl=127 time=0.032 ms

--- 10.1.2.249 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1050ms
rtt min/avg/max/mdev = 0.019/0.025/0.032/0.006 ms

Pinging: Dev Server (VPC2)

PING 10.2.1.29 (10.2.1.29) 56(84) bytes of data.

64 bytes from 10.2.1.29: icmp_seqg=1 ttI=127 time=0.909 ms
64 bytes from 10.2.1.29: icmp_seqg=2 ttl=127 time=0.490 ms

---10.2.1.29 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1037ms
rtt min/avg/max/mdev = 0.490/0.699/0.909/0.209 ms

Pinging: Test Server(VPC3)

PING 10.3.1.129 (10.3.1.129) 56(84) bytes of data.

64 bytes from 10.3.1.129: icmp_seq=1 ttl=127 time=0.884 ms
64 bytes from 10.3.1.129: icmp_seq=2 ttl=127 time=0.417 ms

---10.3.1.129 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.417/0.650/0.884/0.233 ms

Pinging: Shared Server(VPC4)

PING 10.4.1.22 (10.4.1.22) 56(84) bytes of data.

64 bytes from 10.4.1.22: icmp_seqg=1 ttl=127 time=0.799 ms
64 bytes from 10.4.1.22: icmp_seqg=2 ttl=127 time=0.420 ms




---10.4.1.22 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.420/0.609/0.799/0.189 ms

[T

Production Server (VPC1) has succeeded in pinging all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success

T T

Warning: Permanently added '10.2.1.29' (ED25519) to the list of known

Pinging: Production Server (VPC1)

PING 10.1.2.249 (10.1.2.249) 56(84) bytes of data.

64 bytes from 10.1.2.249: icmp_seq=1 ttl=127 time=0.759 ms
64 bytes from 10.1.2.249: icmp_seq=2 ttl=127 time=0.508 ms

---10.1.2.249 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1078ms
rtt min/avg/max/mdev = 0.508/0.633/0.759/0.125 ms

Pinging: Dev Server (VPC2)

PING 10.2.1.29 (10.2.1.29) 56(84) bytes of data.

64 bytes from 10.2.1.29: icmp_seq=1 ttl=127 time=0.018 ms
64 bytes from 10.2.1.29: icmp_seq=2 ttl=127 time=0.033 ms

---10.2.1.29 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.018/0.025/0.033/0.007 ms

Pinging: Test Server(VPC3)

PING 10.3.1.129 (10.3.1.129) 56(84) bytes of data.

64 bytes from 10.3.1.129: icmp_seq=1 ttl=127 time=0.673 ms
64 bytes from 10.3.1.129: icmp_seq=2 ttl=127 time=0.412 ms

16



---10.3.1.129 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1037ms
rtt min/avg/max/mdev = 0.412/0.542/0.673/0.130 ms

Pinging: Shared Server(VPC4)

PING 10.4.1.22 (10.4.1.22) 56(84) bytes of data.

64 bytes from 10.4.1.22: icmp_seqg=1 ttl=127 time=0.840 ms
64 bytes from 10.4.1.22: icmp_seqg=2 ttl=127 time=0.433 ms

---10.4.1.22 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.433/0.636/0.840/0.203 ms

T T
Dev Server (VPC2) has succeeded in pinging all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success

T T

Warning: Permanently added '10.3.1.129' (ED25519) to the list of known

Pinging: Production Server (VPC1)

PING 10.1.2.249 (10.1.2.249) 56(84) bytes of data.

64 bytes from 10.1.2.249: icmp_seq=1 ttl=127 time=0.383 ms
64 bytes from 10.1.2.249: icmp_seq=2 ttl=127 time=0.469 ms

---10.1.2.249 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1065ms
rtt min/avg/max/mdev = 0.383/0.426/0.469/0.043 ms

Pinging: Dev Server (VPC2)

PING 10.2.1.29 (10.2.1.29) 56(84) bytes of data.

64 bytes from 10.2.1.29: icmp_seq=1 ttl=127 time=0.469 ms
64 bytes from 10.2.1.29: icmp_seq=2 ttl=127 time=0.357 ms

17



---10.2.1.29 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.357/0.413/0.469/0.056 ms

Pinging: Test Server(VPC3)

PING 10.3.1.129 (10.3.1.129) 56(84) bytes of data.

64 bytes from 10.3.1.129: icmp_seq=1 ttl=127 time=0.016 ms
64 bytes from 10.3.1.129: icmp_seq=2 ttl=127 time=0.032 ms

---10.3.1.129 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.016/0.024/0.032/0.008 ms

Pinging: Shared Server(VPC4)

PING 10.4.1.22 (10.4.1.22) 56(84) bytes of data.

64 bytes from 10.4.1.22: icmp_seqg=1 ttl=127 time=0.729 ms
64 bytes from 10.4.1.22: icmp_seqg=2 ttl=127 time=0.524 ms

---10.4.1.22 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1037ms

rtt min/avg/max/mdev = 0.524/0.626/0.729/0.102 ms

T T
Test Server(VPC3) has succeeded in pinging all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success

T T

Warning: Permanently added '10.4.1.22' (ED25519) to the list of known

Pinging: Production Server (VPC1)

PING 10.1.2.249 (10.1.2.249) 56(84) bytes of data.

64 bytes from 10.1.2.249: icmp_seq=1 ttl=127 time=0.457 ms
64 bytes from 10.1.2.249: icmp_seq=2 ttl=127 time=0.578 ms

18



---10.1.2.249 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1017ms
rtt min/avg/max/mdev = 0.457/0.517/0.578/0.060 ms

Pinging: Dev Server (VPC2)

PING 10.2.1.29 (10.2.1.29) 56(84) bytes of data.

64 bytes from 10.2.1.29: icmp_seqg=1 ttl=127 time=0.425 ms
64 bytes from 10.2.1.29: icmp_seqg=2 ttl=127 time=0.473 ms

---10.2.1.29 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.425/0.449/0.473/0.024 ms

Pinging: Test Server(VPC3)

PING 10.3.1.129 (10.3.1.129) 56(84) bytes of data.

64 bytes from 10.3.1.129: icmp_seq=1 ttl=127 time=0.649 ms
64 bytes from 10.3.1.129: icmp_seq=2 ttl=127 time=0.385 ms

---10.3.1.129 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms

rtt min/avg/max/mdev = 0.385/0.517/0.649/0.132 ms

Pinging: Shared Server(VPC4)

PING 10.4.1.22 (10.4.1.22) 56(84) bytes of data.

64 bytes from 10.4.1.22: icmp_seqg=1 ttl=127 time=0.017 ms
64 bytes from 10.4.1.22: icmp_seqg=2 ttl=127 time=0.033 ms

---10.4.1.22 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 0.017/0.025/0.033/0.008 ms

T
Shared Server(VPC4) has succeeded in pinging all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success
T

These are the overall results for each machine:

19



Production Server (VPC1) (10.1.2.249): Success
Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success
Shared Server(VPC4) (10.4.1.22): Success

You can see here how each instance tries to ping all the instances (including itself). This reports back on the
success or failure of this. A summary is given at the end for each instance.

6.2 CAUSING ISSUES INTENTIONALLY TO SHOW PROOF OF CONCEPT

There are a number of ways to force failed results. These include, but are not limited to, stopping
instances, changing security group permissions, deleting peering connections and changing Network ACL
permissions. To prove that the python script is pinging and returns the correct output | undertook two
tests.

6.2.1 STOPPING AN INSTANCE

Using the AWS console | stopped one of the servers (Dev Server —VPC2) and the re-ran the python script to
show how it will timeout and the results.

(I have only shown a brief part of the output to show what is different)

Each of the instances tried to ping the Dev Server but due to it being offline they all failed and so each
machine had an overall fail.

Pinging: Dev Server (VPC2)
PING 10.2.1.29 (10.2.1.29) 56(84) bytes of data.

---10.2.1.29 ping statistics ---
2 packets transmitted, O received, 100% packet loss, time 1036ms

T T

Unfortunately the Production Server (VPC1) (10.1.2.249) has failed to ping all other
machines.

Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Fail

Test Server(VPC3) (10.3.1.129): Success

20



Shared Server(VPC4) (10.4.1.22): Success
T T

11T

Unfortunately the Test Server(VPC3) (10.3.1.129) has failed to ping all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Fail

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success

LT

[T

Unfortunately the Shared Server(VPC4) (10.4.1.22) has failed to ping all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Fail

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success

[T

These are the overall results for each machine:
Production Server (VPC1) (10.1.2.249): Fail
Dev Server (VPC2) (10.2.1.29): Fail

Test Server(VPC3) (10.3.1.129): Fail

Shared Server(VPC4) (10.4.1.22): Fail

6.2.2 DELETING A PEERING CONNECTION

After having restarted the Dev Server | then deleted one of the peering connections that connects VPC3
and VPC4 as well as the routes in the route table associated with those peering connections. This means
that the instances in those VPCs can hot communicate with eachother, however all of the instances can

communicate with them. We therefore expect to see a different failure output.

Production Server should fully succeed.

Dev Server should fully succeed.

Test Server (VPC3) can ping itself, Production and Dev but not the Shared Server in VPCA4.
Shared Server (VPC4) can ping itself, Production and Dev but not the Test Server in VPC3.

21



The following is the output from that test:

[T

Production Server (VPC1) has succeeded in pinging all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success

s

s

Dev Server (VPC2) has succeeded in pinging all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Success

s

T 11T

Unfortunately the Test Server(VPC3) (10.3.1.129) has failed to ping all other machines.
Production Server (VPC1) (10.1.2.249): Success

Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Success

Shared Server(VPC4) (10.4.1.22): Fail

s

T T
Unfortunately the Shared Server(VPC4) (10.4.1.22) has failed to ping all other
machines.

Production Server (VPC1) (10.1.2.249): Success
Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Fail

Shared Server(VPC4) (10.4.1.22): Success

T

These are the overall results for each machine:
Production Server (VPC1) (10.1.2.249): Success
Dev Server (VPC2) (10.2.1.29): Success

Test Server(VPC3) (10.3.1.129): Fail

Shared Server(VPC4) (10.4.1.22): Fail

It can be seen from these that there isn’t anything wrong with the servers as the Production Server and
Dev Server successfully pinged all of the other machine. However there was an issue with the Test Server
and Shared Server. As both of these successfully pinged the others servers but failed to ping each other
this implies an issue with the peering connection and that should be looked into as a the issue.

22



7. CONCLUSION

Overall this exercise successfully shows how peering connections are able to connect separate VPCs as long
as the CIDR ranges of each VPC don’t overlap. This could also be done using a Transit Gateway. Transit
Gateways are significantly easier to set up especially if you are connecting more then 4 VPCS. The number
of peering connections based on the number of VPCs being connected is shown below.

However transit connections are often more expensive in their monthly costs. Therefore a trade-off is
required between hours and complexity of setting up and maintenance vs. recurring monthly costs.

After having completed the test | deleted the stack using CloudFormation. This deletes everything that was
created automatically including the instances, VPCs, Peering Connections, Security Groups etc. This
prevents the risk of accidentally incurring any costs.

23



