TWO TIER RDS AUTOSCALING
ARCHITECTURE IN
CLOUDFORMATION AND
TERRAFORM

CONTENTS

R = 1= O PR PSP PPRPPRRPRO 2
2 g o] = g = o T o TSP 2
3. Cloudformation VS TerrafOrmc.ee i 3
4. AWS CloUAFOrMAatioN ...cooeeieiiieiienieeee ettt e e st e e st e s se e s r e e saneeneesneeeans 4
4.1 Creating the VPC, Subnets and Internet GAatEWAYcccueeeiriiiieiiiiiiee e eriiee e ssiree e ssieee e sseereeessans 4
4.2 ROUEE TaBI@S ..t et e st e st e e sab e e s eab e e snteesnneeenneeens 5
e Y XU o 1Y or= [T g Y= <@ A C o U T J USSR 6
4.4 Y Tol N T g Y CT o 1V o L PP 7
4.5 Amazon RDS MySQL Databasecccci ittt e e e e e e e e e s naaa e e e e e s aeeeean 9
4.6 JiN oY ol [Tor=Yd o] g M WoT-To Il o =1 1 s Lol o U P PUPP 9
L N O o TU e K.V ol o 1A - [o O TP U PPPRTRPRURT 11
4.8 U DU S e s e s e s e e e e e e e e e s e aaaaaaaeaaaaaaaaaaaaaaans 11
5. Creating The Stack In Cloudformationccuueiiieiiiiiiiie e s s 11
S o Y A oY= (o T =T 4 ¢ {0 o o TSP SPR 13
6.1 Creating the VPC, Subnets and Internet GatEWaYccceeeeeiiieeeieiiieeee et e e aaaeee e 13
6.2 ROULE TaBI@S .. et bb e s e e s b e e s 14
6.3 AUTOSCAlING EC2 GIOUD .o eeieiiieieeeeeeeeceitreee ittt e e e eeseetttreeeeeeeesesastassaaeeeeeessesnssssseeeeessessnnnssrsaaaeseesanns 15
6.4 Y =Tol U g YA G XU« F RN 16
6.5 Amazon RDS MySQL Databaseceeccuiiieiiiiiieeceiiee ettt e e e st e e e e saae e e e e naaee e e e nnnaaeeas 18
6.6 JAN o o] Lo 14 To] gl Mo Y=L l 2 F- | - [l =] Spu O SPRRP 18
6.7 ClOUAWATCN ATQIM Lttt ettt e b e ettt e e bt e e s bbeessnseesneeesnneenane 19
7. Deployment Via TerrafOrM.. ...t e e e e e e e e e e et e e e e e ateeeeeennsaaeeeenreeas 20
7.1 Terraform INitialiSation.....c...coceeiiiiee e 20
7.2 Applying Terraform TeMPIATE ...c.cceeiiee e et e e e e e e e anaeas 21
7.3 TErTAfOrM OULPULS..eeiiiiieicccitieiee ettt e e e e ee s ree e e e e e e s ee s btrrrreeeeeeesesnssraaeeeeeeeesssanssrranaaeseesanns 22
S 607 ol (U1 o TP PROPRTRON 22

1. BRIEF

The brief was to create a highly available two-tierinfrastructure consistingof an autoscaled group of EC2
instancesin front of an applicationload balancer (ALB) in a publicsubnet. The autoscaled group is then
connected to an Amazon RDS databaseinstance. Finally a CloudWatch alarmis set up to be triggered
based on a certain number of requests that the ALB receives in a given time period.

The extension challenge was to build this infrastructure in CloudFormation. | also decided to extend the
extension taskin two further ways. The first was to create the infrastructure using Terraform as well due to
Terraform’s multicloud Infrastructure as Code (1aC) offering as well as its significant use in the cloud
industry. The second was, rather than hardcode the database passwordinto the template, use AWS
Secrets Manager to manage the password instead.

2. EXPLANATION

Intefnet
Region AZ1 : AZ2
London (EU-West-2) i | ﬂ H
Virtual Private Cloud r
| 10.0.0.0/16 IGW
Public Subnet 1 i

; 10.0.1.0/ ‘ ; ' 10.0.3.0/24

“ALB

i 1 ¢ EC2 Security Group | 1 | iv] i Notes
1 i | —’l‘— f i H
O : i | 1 | : [1 | : EC?2 instances are auto scaled (min -
DDD : D : Auto Scaling : : 1, max - 2 in each az) and connected

: ! ; i H ! to an application load balancer for
CloudWatch | EC2 In tancesi | iEcz Instances i high availability. These are in a
Alarm that : ' ' : i i | security group which allows traffic
triggers when > ; { : ; g | from ALB and SSH (for admin if
100 requests to ! : : : : : private key used (not part of set up))
ALB occur within | : | ;
1 'T!'““‘ekN" ; : ; : Cloud Watch alarm watching ALB
action taken ; : and set to be in alarm if receives over

: : ; 100 requests a minute.
@ Private Subnet ' ' @ Private Subnet '
10.0.2.0/24 : H : 10.0.4.0/24 H
r

RDS database with failover in second
AZ using aynchronous replication to

ensure up to date.

Y E RDS Security Group
K_27 | ; RDS failover not in CloudFormation
CE) N template due to costs outside AWS
Z Y ‘ free tier.
Primary RDS | P FaiIO\igr RDS
MySQL — —Asynchronous Replm}atlon —————— MySQL

High availability is a key part of any effective cloud architecture as it is likely that something will fail at
some stage. Thiscould be an EC2 instance, a database instance an availability zone (AZ) or even an entire
region. Developingarchitecture that can handle failureis a key part of any good cloud architecture. In this
project | have designed a system over two availability zonesin case one fails. Thisincludes an autoscaling
group across two AZs. This autoscalinggroup helps both availability and elasticity. Should the trafficto the
EC2 instances spike then the autoscalinggroup can provision more EC2s to handle demand. This can be
doneon a schedule (if the spike is known about in advance) or using step scaling, simple scalingor
predictive scaling.

The EC2 instances could be a web server. As clients go to a webpage they are directed (unbeknownst to
them) to the Application Load Balancer (ALB). The ALB then directs the traffic to the most appropriate EC2
instances based on usage, AZ availability and the health checks that the ALB can do. These EC2 instances
then have access to the primary MySQL RDS (Relational Database Service) in AZ1. There is thenalsoa
secondary failover RDS instancein AZ2 in case of failure of the primary RDS instance.

Note: In the CloudFormation template there isn’t a Multi-AZ RDS deployment as this would fall outside of
the AWS free tier allocation and incur unwanted costs.

3. CLOUDFORMATION VS TERRAFORM

Both AWS CloudFormation and HashiCorp Terraform are tools designed to manage and provision
infrastructure usingcode. This Infrastructure as Code approach allows developers and operations teams to
define theirinfrastructure requirementsin a declarative manner, makingit more predictable, version -

3

controlled, and reproducible. While CloudFormation is tightly integrated with Amazon Web Services (AWS),
Terraform offers multi-cloud support, allowingyou to provision resources not only on AWS but also on
other cloud providers like Microsoft Azure, Google Cloud Platform, and more. This flexibility makes
Terraform an attractive choice for organizations with a multi-cloud or hybrid cloud strategy.
CloudFormation uses JSON or YAML as its configuration language. While these are standard data
interchange formats, some users find them verbose and less user-friendly for complex configurations. On
the other hand, Terraform uses HashiCorp Configuration Language (HCL), which is more human-readable
and designed specifically for defininginfrastructure. Both tools maintain a state file to track the resources
they manage. CloudFormation handles state managementinternally, while Terraform provides greater
control over state management. Terraform's explicit state management can be advantageousfor certain
scenarios, allowing for more advanced workflows and better collaboration amongteams.

4. AWS CLOUDFORMATION

4.1CREATING THE VPC, SUBNETS AND INTERNET GATEWAY

For this architecture one VPC and four subnets are required. Two of the subnets would be publicsubnets
accessible over the internet via the Internet Gateway. The other two would be private subnets where the
MySQL RDS database sits.

10.0.0.0/16
: true
. true

: Name
: KenobiVPC

IRef VPC
10.0.1.0/24
: eu-west-2a
: true

: Name
PublicSubnetl

!Ref VPC

.0/24
eu-west-2b
true

: Name
: PublicSubnet?2

IRef VPC
10.0.3.0/24
eu-west-2a
false

: Name
PrivateSubnetl

IRef VPC
10.0.4.0/24
eu-west-2b
false

: Name
PrivateSubnet2

To allow clients over the internet to access the EC2 instances the subnet must have internet access and
therefore the VPC needs an Internet Gateway attached toit. The Internet Gateway needs creatingand
then attachingto the VPC.

!Ref VPC

!Ref InternetGateway

4.2 ROUTE TABLES
In this project we need two route tables. One associated with both publicsubnetsto allowinternet access
and one associate with both private subnetsto onlyallowlocal routing. The process for thisin

CloudFormationis:

1. Createtheroutetable
2. Createthe appropriateroutes (egto theinternetviathe IG)
3. Associateappropriate subnets with that routetable

In this situation, we want to allow routing between the subnets (which is a default route) but also we need
to create a route for the publicsubnets to access the internet so we need to create a route for those
subnetsto reach the Internet Gateway.

: AWS: :EC2: :Route

InternetGateway
!Ref PublicRouteTable

'Ref InternetGateway

!Ref PublicSubnetl
'Ref PublicRouteTable

!Ref PublicSubnet?2
IRef PublicRouteTable

: AWS::EC2::RouteTable

!Ref VPC

: Name
: KenobiPrivateRouteTable

!Ref PrivateSubnetl
!Ref PrivateRouteTable

IRef PrivateSubnet?2
!Ref PrivateRouteTable

4.3 AUTOSCALING EC2 GROUP

Having EC2 instancesin an autoscaling group allows for extra EC2s to be provisioned if the traffic increases
and then can terminate the instances when traffic decreases. It also allows for instances to be terminated
if they’re defined as unhealthyorif updates are made. With an autoscaling group you set the minimum
number of instances, the desired number and the maximum number that group can be. You can then
choose how you want the group to scale. This can be done using scheduled scaling (at a certain time),
predictive scaling (using machine learning), step scaling (using CloudWatch alarms) or simple scaling (also
using CloudWatch alarms).

The EC2 instances provisioned require a Launch Template. Thistemplateis the basicbuilding block of the
EC2 instances asthey are scaled up. In this Launch Template | have provided the AMI of a linux machinein

eu-west-2 (London). (A different AMI would be required if this was launched in a different region — this
6

could be overcome with mappings but | haven’t donethatin this template). | have alsoincluded the
instance type (t2.micro — in the free tier) and security group.

: KenobiTestLaunchTemplate

t2.micro
ami-0d76271a8al525cla

- !GetAtt AutoscalingSecurityGroup.GroupId

For the actual scalinggroup | have defined which AZs | want the instances launched in, minimum and
maximum number of instances in the group, health check grace period, which launch template to use (as
above), which subnetstolaunchinandthe Application Load Balancer target group that | want thisto be a
part of.

!Ref MyLaunchTemplate
!GetAtt MyLaunchTemplate.LatestVersionNumber

!Ref PublicSubnetl
!Ref PublicSubnet?2

!'Ref ALBTargetGroup

At the bottom of the Autoscaling Group is the TargetGroupARNs. Thisis how the autoscaling group is
attached to the target group of the Application Load Balancerin a future section. Just for fun | added some
basic Userdata that makes the instancesinto a webserver that can be accessed through the ALB.

4.4 SECURITY GROUPS

Various security groups need creating for the EC2s, ALB and RDS database instance.

The Application Load Balancer needsinternet access via HTTP and HTTPS from 0.0.0.0/0

Security group for Application Load Balancer

!Ref VPC

tcp

80

80

0.0.0.0/0
tcp

: 443

443

0.0.0.0/0

The autoscaling security group allows HTTP and HTTPS access from the ALB. This means the autoscaling
group can’t be accessed directly from the internet, traffic has to come through the ALB.

| was havingissues with a circularargument as the Autoscaling Security Group was referencing the RDS
Security Group and visa versa. Instead | separated out the creation of the Autoscaling Security Group and
its ingress rules. This allowed CloudFormation to create the security group without havingdependency
issues. As security groups are stateful, | didn’t need separate egress rules as these are the same as the
ingress rules.

Security group for autoscaling
!Ref VPC

!Ref AutoscalingSecurityGroup

'Ref RDSSecurityGroup

!Ref AutoscalingSecurityGroup
tcp

!Ref ALBSecurityGroup

The RDS database instance also needs an appropriate security group. The database should only be

accessed from the EC2s autoscaling group and thereforeits security group hasingress only over port 3306
(MysQL).

Security group for RDS instance

!Ref AutoscalingSecurityGroup

4.5 AMAZON RDS MYSQL DATABASE

As part of the brief an Amazon RDS MySQL database needed to be provisionedin the private subnets
within the VPC. As mentioned | have only created one DB instance to remain within the AWS Free Tier
rather than primary and secondaryinstances for failover. You need to have a subnet group to ensure that
the database sits within a VPC.

AWS: :RDS: : DBSubnetGroup

Subnet group for RDS
: RDSSubnetGroup

- !GetAtt PrivateSubnetl.SubnetId
- !GetAtt PrivateSubnet2.SubnetId

Then creating the DB instance within the subnet group:
: AWS;:RDS::DBInstance

eu-west-2a
db.t2.micro
: KenobiMySQLDB
!Ref DBSubnetGroup

: MySQL

True

admin

By setting the ManageMasterUserPassword variable to True this creates a password for the RDS database
in AWS Secrets Manager and prevents havingto hardcode the password into the CLoudFormation
template.

4.6 APPLICATION LOAD BALANCER

An application load balanceris able to decide which EC2 within the auto scaling group is the most
appropriateto send the trafficto. It is able to monitorthe health of the target EC2s and ensure only

9

healthy EC2s are sent traffic. ALBs can also route traffic based on the URL path, the host, HTTP headers and
other methods.

For an ALB to function it needs a listener group. Thisis what portsit’s listening on. It needs a target group —
thisis the group of EC2s thatit’s going to balance between. In this situation, for ease, | haven’t allowed the
ALB to listen on port 443 as this would require an SSL certificate. As such it only listens on port 80 (HTTP)
andthen forwards to the ALB Target Group (the auto scaling EC2 group)

: AWS::ElasticLoadBalancingV2::Listener

!Ref KenobiALB

forward

!Ref ALBTargetGroup

The ALB Target Group

: AWS::ElasticLoadBalancingV2: :

: ALBTargetGroup
80
: HTTP

: deregistration delay.timeout seconds

e
)

!Ref VPC

This target group defines the metrics for an instance being healthy or unhealthy. As mentioned previously
thistarget group has had the autoscaling group assigned to it. This was done at the bottom of the
autoscalinggroup codein TargetGroupARNs.

Finally, the actual ALB needs creating. This gives it a security group and defines which subnetsitresidesin.
ALBs need subnetsin at least two availability zones. (This is not the same for Gateway and Network Load
Balancers).

AWS: :ElasticLoadBalancingV2: :LoadBalancer

: KenobiElasticLoadBalancer

- !Ref ALBSecurityGroup

- !GetAtt PublicSubnetl. netId
- !GetAtt PublicSubnet?2. netId

4.7 CLOUDWATCH ALARM

The final part of the brief was to set up a CloudWatch alarmto trigger based on an arbitrary metric. | set up
a CloudWatch alarmto trigger if there are greater than or equal to 100 requests to the ALB in a minute. It
onlyrequires thisto occurin one minute for the alarmto be triggered. The alarm doesn’t trigger any
actionsbutit could be used to send of an SNS notification, scalingactivityamongother actions.

: RequestCount
: AWS/ApplicationELB
Sum

100
GreaterThanOrEqualToThreshold

: LoadBalancer
IRef KenobiALB
TargetGroup
!Ref ALBTargetGroup

4.8 OUTPUTS

| added a CloudFormation output of the DNS of the application load balancer.

DNS of ALB
!GetAtt KenobiALB.DNSName

5. CREATING THE STACK IN CLOUDFORMATION

When using CloudFormation you can choose to either upload a JSON or YAML file, find the file in an S3
bucket, user pre-existingtemplates or create one inthe designer. For this project | created my own YAML
file in a text editorand uploaded this manually. CloudFormation then goes through and creates the
resourcesin the bestorder it decides.

11

Events (5)

Q, Search events ‘ &
Timestamp Logical ID | Status Status reason
2023-08-13 21:01:18 Resource creation

VPC ® CREATE_IN_PROGRESS -
UTC+0100 Initiated
2023-08-13 21:01:18 Resource creation

InternetGateway @ CREATE_IN_PROGRESS .
UTC+0100 Initiated
2023-08-13 21:01:17

VPC ® CREATE_IN_PROGRESS -
UTC+0100
2023-08-13 21:01:17

InternetGateway @ CREATE_IN_PROGRESS -
UTC+0100
2023-08-13 21:01:14 . .
. TwoTierRDS @ CREATE_IN_PROGRESS User Initiated

Events (46)

Q. Search events ‘ o

Timestamp Logical ID | Status Status reason

2023-08-13 21:01:42

RDSSecurityGroup (© CREATE_COMPLETE -
UTC+0100
2023-08-13 21:01:42)
PrivateRouteTable CREATE_COMPLETE -
uUTC+0100
2023-08-13 21:01:42 .
PublicRouteTable CREATE_COMPLETE -
UTC+0100
2023-08-13 21:01:41 . Resource creation
RDSSecurityGroup (@ CREATE_IN_PROGRESS .
uTC+0100 Initiated
2023-08-13 21:01:39) Resource creation
KenobiALB @ CREATE_IN_PROGRESS -~
uTCc+0100 Initiated
2023-08-13 21:01:38
MyLaunchTemplate (© CREATE_COMPLETE -

UTC+0100

Some resources take longer to provision than others. Especially in this situation, the autoscaling group and
the RDS database.

12

Events (74)

9|

Q, Search events ‘ 0]

Timestamp Logical ID | Status Status reason

2023-08-13 21:03:14

TwoTierRDS @ CREATE_COMPLETE -
uUTC+0100
2023-08-13 21:03:12 i

ALBListener ® CREATE_COMPLETE -
UTC+0100
2023-08-13 21:03:12 i @ CREATE_IN_PROGRES Resource creation

ALBListener .
uTC+0100 S Initiated
2023-08-13 21:03:11) @ CREATE_IN_PROGRES

ALBListener -
UTC+0100 S
2023-08-13 21:03:10 .

KenobiALB @ CREATE_COMPLETE -
uUTC+0100
2023-08-13 21:02:43 .

AutoScalingGroup (® CREATE_COMPLETE -

UTC+0100

6. PORTING TO TERRAFORM

Terraformis an open source Infrastructure as Code tool thatis more commonly used than CloudFormation
dueto its ability to be used for multi-cloud systems. The layout and commands are different but have some
similarity to CloudFormation.

6.1 CREATING THE VPC, SUBNETS AND INTERNET GATEWAY

With Terraform you have to specify first that you are using AWS (as Terraform can also be used with
multiple other cloud providersincluding Azure, Oracle, Google Cloud). Then each piece of the

infrastructureis created as a resource.

{
.KenobiTFVPC.

{
.KenobiTFVPC.

{
.KenobiTFVPC.

{
.KenobiTFVPC.

.KenobiTFVPC.

6.2 ROUTE TABLES

.KenobiTFVPC.

.KenobiTFIGW.

.TFSubnetPublicl.
.PublicRouteTable.

.TFSubnetPublic?2.
.PublicRouteTable.

.KenobiTFVPC.

.TFSubnetPrivatel.
.PrivateRouteTable.

.TFSubnetPrivate?2.
.PrivateRouteTable.

6.3 AUTOSCALING EC2 GROUP

As with CloudFormation you need to define a launch template to be used when creating any EC2 instances
in the autoscaling group. This defines the ami, instance type, security group and in this case | included user
datathatinstallsan Apache HTTP server and an HTML file with the content “Hello World from”. This
includes hostname (ip address) of the server so in testing when you use the DNS of the Application Load
Balanceryou can see it changing between the various servers. The autoscaling grou p itself sets a minimum
of 2 instances and a maximum of 4 in the two publicsubnets.

In the autoscalinggroup resource thereis also the linkto the Application Load Balancer target group using

the target_group_arnvariable.

= [.autoscaling sg.]

= baseo6d4encode (<<-EOF
#!/bin/bash
yum update -y
yum install -y httpd.x86 64
systemctl start httpd.service
systemctl enable httpd.service
echo “Hello World from $ (hostname -f)” > /var/www/html/index.html
EOF

.TFSubnetPublicl.
.TFSubnetPublic?2.

.autoscaling launch template.

6.4 SECURITY GROUPS

With the security groups | created a circular dependency between the RDS security group and the auto
scaling security group. The autoscalinggroup needed ingress from the RDS security group and the RDS
security group needed ingress from the autoscaling group. Terraform (and CloudFormation) is unable to
create these asone depends onthe other and visa versa. The way | solve thisis to on the autoscalinggroup
remove the ingress from the RDS security group. Then as a separate resource, | create an
“aws_vpc_security_group_ingress_rule” allowingingress from the RDS security group and attach thisto
the autoscalingsecurity group. This breaks the circular dependency and allows Terraform to create:

1. AutoscalingSecurity Group
2. RDS Security Group (includingingress from Autoscaling Security Group)
3. Ingress Rule attached to Autoscaling Security Group (with ingress from RDS security group).

.KenobiTFVPC.

.autoscaling sg.

.rds_ sg.

.autoscaling sg]

.KenobiTFVPC.

.autoscaling sg.

.KenobiTFVPC.

6.5 AMAZON RDS MYSQL DATABASE

As with CloudFormation you need a database subnetgroup and then the databaseinstance. As before
instead of hardcodingthe username and password into the Terraform template | instead allowed the
databaseto use AWS Secrets Manager as a more secure way of creating a password.

.TFSubnetPublicl. .TFSubnetPublic?2.]

.SubnetGroup.

6.6 APPLICATION LOAD BALANCER

With the ALB you need a listener to inform the ALB which portsto listen for traffic on, a target group — the

EC2 autoscalinggroup (the linkis made in the autoscaling group resource) and the ALB itself.

.alb sg.]
.TFSubnetPublicl. .TFSubnetPublic?2.]

.KenobiTFVPC.

.KenobiTFALB.

.alb target group.

6.7 CLOUDWATCH ALARM

The Cloudwatch alarm triggers if there are greater than or equal to 100 requests on the ALB in any 60
second period. It only requires one period of this traffic to go into alarm.

.KenobiTFALB.

19

7. DEPLOYMENT VIA TERRAFORM

7.1 TERRAFORM INITIALISATION
Terraformis initialised within the folder where the Terraform file is stored usingthe command terraform
init

=
PS C:\Users\mike.macdonald> terraform init

Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/aws versions matching "~> 4.16"...
- Installing hashicorp/aws v4.67.0...

- Installed hashicorp/aws v4.67.0 (signed by HashiCorp)

erraform has created a lock file .terraform.lock.hcl to record the provider
selections it made above. Include this file in your version control repository
so that Terraform can guarantee to make the same selections by default when
you run "terraform init"™ in the future.

PS C:\Users\mike.macdonald>

20

7.2 APPLYING TERRAFORM TEMPLATE

Using the terraform apply command this finds the appropriate .tffile, uses the file and the local .tfstate file
to determine what additions, deletions and changes need makingto the infrastructure.

aws_vpc.KenobiTFVPC will be created
resource “"aws_vpc" "KenobiTFVPC" {

arn
cidr_block
default_network_acl_id
default_route_table_id
default_security_group_id
dhcp_options_id
enable_classiclink
enable_classiclink_dns_support
enable_dns_hostnames
enable_dns_support
ggab1e_network_address_usage_metrics
z
instance_tenancy
ipv6_association_id
ipv6_cidr_block
ipv6_cidr_block_network_border_group
main_route_table_id
owner_id

(known after apply)
"10.0.0.0/16"
(known after apply)
(known after apply)
(known after apply)
(known after apply)
(known after apply)
(known after apply)
true

true

(known after apply)
(Cknown after apply)
"default"

(known after apply)
(Cknown after apply)
(Cknown after apply)
Cknown after apply)
Eknown after apply)

"KenobivpPC"

= "KenobivPC"

aws_vpc_security_group_ingress_rule.autoscaling-security-group-ingress-from-RDS will be created
resource "aws_vpc_security_group_ingress_rule" "autoscaling-security-group-ingress-from-RDS" {

arn = (known after apply)
description "MysQL from RDS"
from_port 3306
id
ip_protocol
referenced_security_group_id
security_group_id
security_group_rule_id
tags_all
to_port

after apply)

after apply)
after apply)
after apply)

}
Plan: 24 to add, 0 to change, 0 to destroy.
Do you want to perform these actions?

Terraform will perform the actions described above.
only 'yes' will be accepted to approve.

21

7.3 TERRAFORM OUTPUTS

Terraform then works through creatingthe appropriate resources. Some are quicker than others. The
autoscalinggroup and the RDS database take the longest.

Do you want to perform these actions?
Terraform will perform the actions described above.
only 'yes' will be accepted to approve.

Enter a value: yes

aws_vpc.KenobiTFVPC: Creating...
aws_vpc.KenobiTFVPC: Still creating... [10s elapsed]
aws_vpc.KenobiTFVPC: Creation complete after 12s [id=vpc-02c7f46ba94a0a6do]
aws_subnet.TFSubnetPrivatel: Creating...
subnet.TFSubnetPublic2: Creating...
internet_gateway.KenobiTFIGW: Creating...
subnet.TFSubnetPublicl: Creating...

_ i : Creating...
subnet.TFSubnetPrivate2: Creating...
1b_target_group.alb_target_group: Creating...
security_group.alb_sg: Creating...
internet_gateway.KenobiTFIGW: Creation complete after Os [id=igw-Oadddd94df3d7af83]
route_table.PublicRouteTable: Creating...
route_table.PrivateRouteTable: Creation complete after Os [id=rtb-081868cb33879ccll]
subnet.TFSubnetPrivatel: Creation complete after O0s [id=subnet-0138291041ab0c614]
route_table_association.Subnet3 outetable2: Creating...
subnet.TFSubnetPrivate2: Creation complete after 1s [1d=subnet-0276ael2792681a93]
1b_target_group.alb_target_group: Creation complete after 1s [id=arn:aws:elasticloadbalancing:eu-west-2:601403623821:targ
p/212c3ebelee270e4]
aws_route_table_association.Subnet4toroutetable2: Creating...
aws_route_table_association.Subnet3toroutetable Creation complete after Os [id=rtbassoc-06bee4f69d0ce22c3]
L L iati 2: Creation complete after Os [id=rtbassoc-00a301b3fc58b7ed7]
aws_route_table.PublicRouteTable: Creation complete after 1s [id=rtb-07379fb65b169d832]
aws_security_group.alb_sg: Creation complete after 2s [id=sg-0lef3adc2e621clf3]
security_group.autoscaling_sg: Creating...
aws_security_group.autoscaling_sg: Creation complete after 2s [id=sg-0aba3cfl92f629ece]
aws_security_group.rds_sg: Creating...
aws_launch_template.autoscaling_launch_template: Creating...
aws_Tlaunch_template.autoscaling_launch_template: Creation complete after 0s [id=1t-012aedlcc2d067f86]
aws_security_group.rds_sg: Creation complete after 2s [id=sg-0e6d7ffa56c02de76]
aws_vpc_security_group_ingress_rule.autoscaling-security-group-ingress-from-RDS: Creating...
aws_vpc_security_group_ingress_rule.autoscaling-security-group-ingress-from-RDS: Creation complete after Os [id=sgr-0778565cHd
aws_subnet.TFSubnetPublic2: Still creating... [10s elapsed]
aws_subnet.TFSubnetPublicl: Still creating... [10s elapsed]
aws_subnet.TFSubnetPublicl: Creation complete after 1ls [id=subnet-043fdOce744eaBe36]
_ iation.Subnetltoroutetablel: Creating...
_ : Creation complete after 11s [1d=subnet-0b82526361f61d91b]
aws_route_table_association.Subnet2toroutetablel: Creating...

I
=SE===
TR
L

o

c

ey

[

'+

[

o

e

)

)

=

-

<

]

ford

o

X

(o]

<]

=

o

_|

o

o

=

o

EU
laws

[
==
0 A

[aws
[aws

[
=
7}

laws
laws

[E]
=
7}

aws_db_subnet_group.SubnetGroup: Creating...

aws_1b.KenobiTFALB: Creating...

aws_autoscaling_group.ec2_autoscaling: Creating...

aws_route_table_association.Subnet2toroutetablel: Creation complete after Os [id=rtbassoc-0082c86c809af7f21]

_metric_alarm.cw_alarm: Creation comp
aws_db_instance.TerraformKenobiRDS: Still creating... [2ml0s elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [2m20s elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [2m30s elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [2m40s elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [2m50s elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [3mOs elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [3ml0Os elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [3m20s elapsed]
aws_db_instance.TerraformKenobiRDS: Still creating... [3m30s elapsed]

i .TerraformKenobiRDS: Still creating... [3m40s elapsed]

.TerraformKenobiRDS: Still creating... [3m50s elapsed]

.TerraformKenobiRDS: Still creating... [4mOs elapsed]

db .TerraformkenobiRDS: Still creating... [4ml0s elapsed]
aws_db_instance.TerraformKenobiRDS: Creation complete after 4ml8s [id=terraform-20230813210904605300000003]

PS C:\Users\mike.macdonald>

8. CONCLUSION

Both CloudFormation and Terraform can be used in this situation with the same outcome. Terraformis
more widely used inindustry due to its multi-cloud capability however both skills are invaluable. This task
could have been more secure using a three-tier architecture, havingonly the ALB in a publicsubnetand
havingthe Autoscalingand RDS database however, that was outside of the task of the scope.

22

