
Mike Macdonald

TWO TIER RDS AUTOSCALING
ARCHITECTURE IN

CLOUDFORMATION AND
TERRAFORM

1

CONTENTS

1. Brief .. 2

2. Explanation... 2

3. Cloudformation vs Terraform .. 3

4. AWS Cloudformation ... 4

4.1 Creating the VPC, Subnets and Internet Gateway .. 4

4.2 Route Tables .. 5

4.3 Autoscaling EC2 Group .. 6

4.4 Security Groups ... 7

4.5 Amazon RDS MySQL Database .. 9

4.6 Application Load balancer ... 9

4.7 CloudWatch Alarm... 11

4.8 Outputs .. 11

5. Creating The Stack In Cloudformation ... 11

6. Porting to Terraform .. 13

6.1 Creating the VPC, Subnets and Internet Gateway .. 13

6.2 Route Tables .. 14

6.3 Autoscaling EC2 Group .. 15

6.4 Security Groups ... 16

6.5 Amazon RDS MySQL Database .. 18

6.6 Application Load Balancer ... 18

6.7 Cloudwatch Alarm ... 19

7. Deployment via Terraform... 20

7.1 Terraform Initialisation .. 20

7.2 Applying Terraform Template ... 21

7.3 Terraform Outputs... 22

8. Conclusion .. 22

2

1. BRIEF

The brief was to create a highly available two-tier infrastructure consisting of an autoscaled group of EC2

instances in front of an application load balancer (ALB) in a public subnet. The autoscaled group is then

connected to an Amazon RDS database instance. Finally a CloudWatch alarm is set up to be triggered

based on a certain number of requests that the ALB receives in a given time period.

The extension challenge was to build this infrastructure in CloudFormation. I also decided to extend the

extension task in two further ways. The first was to create the infrastructure using Terraform as well due to

Terraform’s multicloud Infrastructure as Code (IaC) offering as well as its significant use in the cloud

industry. The second was, rather than hardcode the database password into the template, use AWS

Secrets Manager to manage the password instead.

2. EXPLANATION

3

High availability is a key part of any effective cloud architecture as it is likely that something will fail at

some stage. This could be an EC2 instance, a database instance an availability zone (AZ) or even an entire

region. Developing architecture that can handle failure is a key part of any good cloud architecture. In this

project I have designed a system over two availability zones in case one fails. This includes an autoscaling

group across two AZs. This autoscaling group helps both availability and elasticity. Should the traffic to the

EC2 instances spike then the autoscaling group can provision more EC2s to handle demand. This can be

done on a schedule (if the spike is known about in advance) or using step scaling, simple scaling or

predictive scaling.

The EC2 instances could be a web server. As clients go to a webpage they are directed (unbeknownst to

them) to the Application Load Balancer (ALB). The ALB then directs the traffic to the most appropriate EC2

instances based on usage, AZ availability and the health checks that the ALB can do. These EC2 instances

then have access to the primary MySQL RDS (Relational Database Service) in AZ1. There is then also a

secondary failover RDS instance in AZ2 in case of failure of the primary RDS instance.

Note: In the CloudFormation template there isn’t a Multi-AZ RDS deployment as this would fall outside of

the AWS free tier allocation and incur unwanted costs.

3. CLOUDFORMATION VS TERRAFORM

Both AWS CloudFormation and HashiCorp Terraform are tools designed to manage and provision

infrastructure using code. This Infrastructure as Code approach allows developers and operations teams to

define their infrastructure requirements in a declarative manner, making it more predictable, version -

4

controlled, and reproducible. While CloudFormation is tightly integrated with Amazon Web Services (AWS),

Terraform offers multi-cloud support, allowing you to provision resources not only on AWS but also on

other cloud providers like Microsoft Azure, Google Cloud Platform, and more. This flexibility makes

Terraform an attractive choice for organizations with a multi-cloud or hybrid cloud strategy.

CloudFormation uses JSON or YAML as its configuration language. While these are standard data

interchange formats, some users find them verbose and less user-friendly for complex configurations. On

the other hand, Terraform uses HashiCorp Configuration Language (HCL), which is more human-readable

and designed specifically for defining infrastructure. Both tools maintain a state file to track the resources

they manage. CloudFormation handles state management internally, while Terraform provides greater

control over state management. Terraform's explicit state management can be advantageous for certain

scenarios, allowing for more advanced workflows and better collaboration among teams.

4. AWS CLOUDFORMATION

4.1 CREATING THE VPC, SUBNETS AND INTERNET GATEWAY

For this architecture one VPC and four subnets are required. Two of the subnets would be public subnets

accessible over the internet via the Internet Gateway. The other two would be private subnets where the

MySQL RDS database sits.

VPC:

 Type: 'AWS::EC2::VPC'

 Properties:

 CidrBlock: 10.0.0.0/16

 EnableDnsSupport: true

 EnableDnsHostnames: true

 Tags:

 - Key: Name

 Value: KenobiVPC

PublicSubnet1:

 Type: 'AWS::EC2::Subnet'

 Properties:

 VpcId: !Ref VPC

 CidrBlock: 10.0.1.0/24

 AvailabilityZone: eu-west-2a

 MapPublicIpOnLaunch: true

 Tags:

 - Key: Name

 Value: PublicSubnet1

PublicSubnet2:

 Type: 'AWS::EC2::Subnet'

 Properties:

 VpcId: !Ref VPC

5

 CidrBlock: 10.0.2.0/24

 AvailabilityZone: eu-west-2b

 MapPublicIpOnLaunch: true

 Tags:

 - Key: Name

 Value: PublicSubnet2

PrivateSubnet1:

 Type: 'AWS::EC2::Subnet'

 Properties:

 VpcId: !Ref VPC

 CidrBlock: 10.0.3.0/24

 AvailabilityZone: eu-west-2a

 MapPublicIpOnLaunch: false

 Tags:

 - Key: Name

 Value: PrivateSubnet1

PrivateSubnet2:

 Type: 'AWS::EC2::Subnet'

 Properties:

 VpcId: !Ref VPC

 CidrBlock: 10.0.4.0/24

 AvailabilityZone: eu-west-2b

 MapPublicIpOnLaunch: false

 Tags:

 - Key: Name

 Value: PrivateSubnet2

To allow clients over the internet to access the EC2 instances the subnet must have internet access and

therefore the VPC needs an Internet Gateway attached to it. The Internet Gateway needs creating and

then attaching to the VPC.

InternetGateway:

 Type: 'AWS::EC2::InternetGateway'

AttachGateway:

 Type: 'AWS::EC2::VPCGatewayAttachment'

 Properties:

 VpcId: !Ref VPC

 InternetGatewayId: !Ref InternetGateway

4.2 ROUTE TABLES

In this project we need two route tables. One associated with both public subnets to allow internet access

and one associate with both private subnets to only allow local routing. The process for this in

CloudFormation is:

1. Create the route table

2. Create the appropriate routes (eg to the internet via the IG)

3. Associate appropriate subnets with that route table

In this situation, we want to allow routing between the subnets (which is a default route) but also we need

to create a route for the public subnets to access the internet so we need to create a route for those

subnets to reach the Internet Gateway.

PublicRoute:

 Type: AWS::EC2::Route

6

 DependsOn: InternetGateway

 Properties:

 RouteTableId: !Ref PublicRouteTable

 DestinationCidrBlock: "0.0.0.0/0"

 GatewayId: !Ref InternetGateway

PublicSubnet1RouteTableAssociation:

 Type: 'AWS::EC2::SubnetRouteTableAssociation'

 Properties:

 SubnetId: !Ref PublicSubnet1

 RouteTableId: !Ref PublicRouteTable

PublicSubnet2RouteTableAssociation:

 Type: 'AWS::EC2::SubnetRouteTableAssociation'

 Properties:

 SubnetId: !Ref PublicSubnet2

 RouteTableId: !Ref PublicRouteTable

PrivateRouteTable:

 Type: AWS::EC2::RouteTable

 Properties:

 VpcId: !Ref VPC

 Tags:

 - Key: Name

 Value: KenobiPrivateRouteTable

PrivateSubnet1RouteTableAssociation:

 Type: 'AWS::EC2::SubnetRouteTableAssociation'

 Properties:

 SubnetId: !Ref PrivateSubnet1

 RouteTableId: !Ref PrivateRouteTable

PrivateSubnet2RouteTableAssociation:

 Type: 'AWS::EC2::SubnetRouteTableAssociation'

 Properties:

 SubnetId: !Ref PrivateSubnet2

 RouteTableId: !Ref PrivateRouteTable

4.3 AUTOSCALING EC2 GROUP

Having EC2 instances in an autoscaling group allows for extra EC2s to be provisioned if the traffic increases

and then can terminate the instances when traffic decreases. It also allows for instances to be terminated

if they’re defined as unhealthy or if updates are made. With an autoscaling group you set the minimu m

number of instances, the desired number and the maximum number that group can be. You can then

choose how you want the group to scale. This can be done using scheduled scaling (at a certain time),

predictive scaling (using machine learning), step scaling (using CloudWatch alarms) or simple scaling (also

using CloudWatch alarms).

The EC2 instances provisioned require a Launch Template. This template is the basic building block of the

EC2 instances as they are scaled up. In this Launch Template I have provided the AMI of a linux machine in

eu-west-2 (London). (A different AMI would be required if this was launched in a different region – this

7

could be overcome with mappings but I haven’t done that in this template). I have also included the

instance type (t2.micro – in the free tier) and security group.

MyLaunchTemplate:

 Type: 'AWS::EC2::LaunchTemplate'

 Properties:

 LaunchTemplateName: KenobiTestLaunchTemplate

 LaunchTemplateData:

 InstanceType: t2.micro

 ImageId: ami-0d76271a8a1525c1a

 SecurityGroupIds:

 - !GetAtt AutoscalingSecurityGroup.GroupId

For the actual scaling group I have defined which AZs I want the instances launched in, minimum and

maximum number of instances in the group, health check grace period, which launch template to use (as

above), which subnets to launch in and the Application Load Balancer target group that I want this to be a

part of.

AutoScalingGroup:

 Type: 'AWS::AutoScaling::AutoScalingGroup'

 Properties:

 AutoScalingGroupName: AutoScalingGroup

 AvailabilityZones:

 - eu-west-2a

 - eu-west-2b

 DesiredCapacity: '2'

 HealthCheckGracePeriod: 10

 LaunchTemplate:

 LaunchTemplateId: !Ref MyLaunchTemplate

 Version: !GetAtt MyLaunchTemplate.LatestVersionNumber

 MaxSize: '4'

 MinSize: '2'

 VPCZoneIdentifier:

 - !Ref PublicSubnet1

 - !Ref PublicSubnet2

 TargetGroupARNs:

 - !Ref ALBTargetGroup

At the bottom of the Autoscaling Group is the TargetGroupARNs. This is how the autoscaling group is

attached to the target group of the Application Load Balancer in a future section. Just for fun I added some

basic Userdata that makes the instances into a webserver that can be accessed through the ALB.

4.4 SECURITY GROUPS

Various security groups need creating for the EC2s, ALB and RDS database instance.

The Application Load Balancer needs internet access via HTTP and HTTPS from 0.0.0.0/0

 ALBSecurityGroup:

 Type: 'AWS::EC2::SecurityGroup'

 Properties:

 GroupDescription: Security group for Application Load Balancer

 VpcId: !Ref VPC

 SecurityGroupIngress:

8

 - IpProtocol: tcp

 FromPort: 80

 ToPort: 80

 CidrIp: 0.0.0.0/0

 - IpProtocol: tcp

 FromPort: 443

 ToPort: 443

 CidrIp: 0.0.0.0/0

 SecurityGroupEgress:

 - IpProtocol: -1

 CidrIp: 0.0.0.0/0

The autoscaling security group allows HTTP and HTTPS access from the ALB. This means the autoscaling

group can’t be accessed directly from the internet, traffic has to come through the ALB.

I was having issues with a circular argument as the Autoscaling Security Group was referencing the RDS

Security Group and visa versa. Instead I separated out the creation of the Autoscaling Security Group and

its ingress rules. This allowed CloudFormation to create the security group without having dependency

issues. As security groups are stateful, I didn’t need separate egress rules as these are the same as the

ingress rules.

AutoscalingSecurityGroup:

 Type: 'AWS::EC2::SecurityGroup'

 Properties:

 GroupDescription: Security group for autoscaling

 VpcId: !Ref VPC

AutoscalingSecurityGroupIngress1:

 Type: 'AWS::EC2::SecurityGroupIngress'

 Properties:

 GroupId: !Ref AutoscalingSecurityGroup

 IpProtocol: tcp

 FromPort: 3306

 ToPort: 3306

 SourceSecurityGroupId: !Ref RDSSecurityGroup

AutoscalingSecurityGroupIngress2:

 Type: 'AWS::EC2::SecurityGroupIngress'

 Properties:

 GroupId: !Ref AutoscalingSecurityGroup

 IpProtocol: tcp

 FromPort: 80

 ToPort: 80

 SourceSecurityGroupId: !Ref ALBSecurityGroup

The RDS database instance also needs an appropriate security group. The database should only be

accessed from the EC2s autoscaling group and therefore its security group has ingress only over port 3306

(MySQL).

RDSSecurityGroup:

 Type: 'AWS::EC2::SecurityGroup'

 Properties:

9

 GroupDescription: Security group for RDS instance

 VpcId: !Ref VPC

 SecurityGroupIngress:

 - IpProtocol: tcp

 FromPort: 3306

 ToPort: 3306

 SourceSecurityGroupId: !Ref AutoscalingSecurityGroup

4.5 AMAZON RDS MYSQL DATABASE

As part of the brief an Amazon RDS MySQL database needed to be provisioned in the private subnets

within the VPC. As mentioned I have only created one DB instance to remain within the AWS Free Tier

rather than primary and secondary instances for failover. You need to have a subnet group to ensure that

the database sits within a VPC.

DBSubnetGroup:

 Type: AWS::RDS::DBSubnetGroup

 Properties:

 DBSubnetGroupDescription: Subnet group for RDS

 DBSubnetGroupName: RDSSubnetGroup

 SubnetIds:

 - !GetAtt PrivateSubnet1.SubnetId

 - !GetAtt PrivateSubnet2.SubnetId

Then creating the DB instance within the subnet group:

RDSDatabase:

 Type: AWS::RDS::DBInstance

 Properties:

 AllocatedStorage: 5

 AvailabilityZone: eu-west-2a

 DBInstanceClass: db.t2.micro

 DBName: KenobiMySQLDB

 DBSubnetGroupName: !Ref DBSubnetGroup

 Engine: MySQL

 ManageMasterUserPassword: True

 MasterUsername: admin

By setting the ManageMasterUserPassword variable to True this creates a password for the RDS database

in AWS Secrets Manager and prevents having to hardcode the password into the CLoudFormation

template.

4.6 APPLICATION LOAD BALANCER

An application load balancer is able to decide which EC2 within the auto scaling group is the most

appropriate to send the traffic to. It is able to monitor the health of the target EC2s and ensure only

10

healthy EC2s are sent traffic. ALBs can also route traffic based on the URL path, the host, HTTP headers and

other methods.

For an ALB to function it needs a listener group. This is what ports it ’s listening on. It needs a target group –

this is the group of EC2s that it’s going to balance between. In this s ituation, for ease, I haven’t allowed the

ALB to listen on port 443 as this would require an SSL certificate. As such it only listens on port 80 (HTTP)

and then forwards to the ALB Target Group (the auto scaling EC2 group)

ALBListener:

 Type: AWS::ElasticLoadBalancingV2::Listener

 Properties:

 LoadBalancerArn: !Ref KenobiALB

 Protocol: HTTP

 Port: 80

 DefaultActions:

 - Type: forward

 TargetGroupArn: !Ref ALBTargetGroup

The ALB Target Group

ALBTargetGroup:

 Type: AWS::ElasticLoadBalancingV2::TargetGroup

 Properties:

 HealthCheckIntervalSeconds: 30

 HealthCheckProtocol: HTTP

 HealthCheckTimeoutSeconds: 15

 HealthyThresholdCount: 5

 Matcher:

 HttpCode: '200'

 Name: ALBTargetGroup

 Port: 80

 Protocol: HTTP

 TargetGroupAttributes:

 - Key: deregistration_delay.timeout_seconds

 Value: '20'

 UnhealthyThresholdCount: 3

 VpcId: !Ref VPC

This target group defines the metrics for an instance being healthy or unhealthy. As mentioned previously

this target group has had the autoscaling group assigned to it. This was done at the bottom of the

autoscaling group code in TargetGroupARNs.

Finally, the actual ALB needs creating. This gives it a security group and defines which subnets it resides in.

ALBs need subnets in at least two availability zones. (This is not the same for Gateway and Network Load

Balancers).

KenobiALB:

 Type: AWS::ElasticLoadBalancingV2::LoadBalancer

 Properties:

 Name: KenobiElasticLoadBalancer

 SecurityGroups:

11

 - !Ref ALBSecurityGroup

 Subnets:

 - !GetAtt PublicSubnet1.SubnetId

 - !GetAtt PublicSubnet2.SubnetId

4.7 CLOUDWATCH ALARM

The final part of the brief was to set up a CloudWatch alarm to trigger based on an arbitrary metric. I set up

a CloudWatch alarm to trigger if there are greater than or equal to 100 requests to the ALB in a minute. It

only requires this to occur in one minute for the alarm to be triggered. The alarm doesn’t trigger any

actions but it could be used to send of an SNS notification, scaling activity among other actions.

CloudWatchAlarm:

 Type: 'AWS::CloudWatch::Alarm'

 Properties:

 AlarmName: '>100 Request/min'

 AlarmDescription: 'Alarm for ALB requests'

 MetricName: RequestCount

 Namespace: AWS/ApplicationELB

 Statistic: Sum

 Period: 60

 EvaluationPeriods: 1

 Threshold: 100

 ComparisonOperator: GreaterThanOrEqualToThreshold

 Dimensions:

 - Name: LoadBalancer

 Value: !Ref KenobiALB

 - Name: TargetGroup

 Value: !Ref ALBTargetGroup

4.8 OUTPUTS

I added a CloudFormation output of the DNS of the application load balancer.

Outputs:

 ALBDNSAddress:

 Description: DNS of ALB

 Value: !GetAtt KenobiALB.DNSName

5. CREATING THE STACK IN CLOUDFORMATION

When using CloudFormation you can choose to either upload a JSON or YAML file, find the file in an S3

bucket, user pre-existing templates or create one in the designer. For this project I created my own YAML

file in a text editor and uploaded this manually. CloudFormation then goes through and creates the

resources in the best order it decides.

12

Some resources take longer to provision than others. Especially in this situation, the autoscaling group and

the RDS database.

13

6. PORTING TO TERRAFORM

Terraform is an open source Infrastructure as Code tool that is more commonly used than CloudFormation

due to its ability to be used for multi-cloud systems. The layout and commands are different but have some

similarity to CloudFormation.

6.1 CREATING THE VPC, SUBNETS AND INTERNET GATEWAY

With Terraform you have to specify first that you are using AWS (as Terraform can also be used with

multiple other cloud providers including Azure, Oracle, Google Cloud). Then each piece of the

infrastructure is created as a resource.

terraform {

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = "~> 4.16"

 }

 }

 required_version = ">= 1.2.0"

}

provider "aws" {

 region = "eu-west-2"

}

resource "aws_vpc" "KenobiTFVPC" {

 cidr_block = "10.0.0.0/16"

14

 enable_dns_hostnames = true

 tags = {

 Name = "KenobiVPC"

 }

}

resource "aws_subnet" "TFSubnetPublic1" {

 vpc_id = aws_vpc.KenobiTFVPC.id

 cidr_block = "10.0.1.0/24"

 availability_zone = "eu-west-2a"

 tags = {

 Name = "Terraform Public Subnet 1"

 }

}

resource "aws_subnet" "TFSubnetPublic2" {

 vpc_id = aws_vpc.KenobiTFVPC.id

 cidr_block = "10.0.2.0/24"

 availability_zone = "eu-west-2b"

 tags = {

 Name = "Terraform Public Subnet 2"

 }

}

resource "aws_subnet" "TFSubnetPrivate1" {

 vpc_id = aws_vpc.KenobiTFVPC.id

 cidr_block = "10.0.3.0/24"

 availability_zone = "eu-west-2a"

 tags = {

 Name = "Terraform Private Subnet1"

 }

}

resource "aws_subnet" "TFSubnetPrivate2" {

 vpc_id = aws_vpc.KenobiTFVPC.id

 cidr_block = "10.0.4.0/24"

 availability_zone = "eu-west-2b"

 tags = {

 Name = "Terraform Private Subnet2"

 }

}

resource "aws_internet_gateway" "KenobiTFIGW" {

 vpc_id = aws_vpc.KenobiTFVPC.id

 tags = {

 Name = "Kenobi TF IGW"

 }

}

6.2 ROUTE TABLES

resource "aws_route_table" "PublicRouteTable" {

 vpc_id = aws_vpc.KenobiTFVPC.id

 route {

 cidr_block = "0.0.0.0/0"

 gateway_id = aws_internet_gateway.KenobiTFIGW.id

 }

15

 tags = {

 Name = "Public Subnets Route Table"

 }

}

resource "aws_route_table_association" "Subnet1toroutetable1" {

 subnet_id = aws_subnet.TFSubnetPublic1.id

 route_table_id = aws_route_table.PublicRouteTable.id

}

resource "aws_route_table_association" "Subnet2toroutetable1" {

 subnet_id = aws_subnet.TFSubnetPublic2.id

 route_table_id = aws_route_table.PublicRouteTable.id

}

resource "aws_route_table" "PrivateRouteTable" {

 vpc_id = aws_vpc.KenobiTFVPC.id

 tags = {

 Name = "Private Subnets Route Table"

 }

}

resource "aws_route_table_association" "Subnet3toroutetable2" {

 subnet_id = aws_subnet.TFSubnetPrivate1.id

 route_table_id = aws_route_table.PrivateRouteTable.id

}

resource "aws_route_table_association" "Subnet4toroutetable2" {

 subnet_id = aws_subnet.TFSubnetPrivate2.id

 route_table_id = aws_route_table.PrivateRouteTable.id

}

6.3 AUTOSCALING EC2 GROUP

As with CloudFormation you need to define a launch template to be used when creating any EC2 instances

in the autoscaling group. This defines the ami, instance type, security group and in this case I included user

data that installs an Apache HTTP server and an HTML file with the content “Hello World from …..”. This

includes hostname (ip address) of the server so in testing when you use the DNS of the Application Load

Balancer you can see it changing between the various servers. The autoscaling group itself sets a minimum

of 2 instances and a maximum of 4 in the two public subnets.

In the autoscaling group resource there is also the link to the Application Load Balancer target group using

the target_group_arn variable.

resource "aws_launch_template" "autoscaling_launch_template" {

 name_prefix = "KenobiEC2-"

 image_id = "ami-0d76271a8a1525c1a"

 instance_type = "t2.micro"

 vpc_security_group_ids = [aws_security_group.autoscaling_sg.id]

 user_data = base64encode(<<-EOF

 #!/bin/bash

 yum update -y

 yum install -y httpd.x86_64

 systemctl start httpd.service

 systemctl enable httpd.service

 echo “Hello World from $(hostname -f)” > /var/www/html/index.html

 EOF

16

)

}

resource "aws_autoscaling_group" "ec2_autoscaling" {

 name = "EC2 Autoscaling Group"

 max_size = 4

 min_size = 2

 health_check_grace_period = 10

 desired_capacity = 2

 vpc_zone_identifier = [aws_subnet.TFSubnetPublic1.id,

aws_subnet.TFSubnetPublic2.id]

 target_group_arns = [aws_lb_target_group.alb_target_group.arn]

 launch_template {

 id = aws_launch_template.autoscaling_launch_template.id

 }

}

6.4 SECURITY GROUPS

With the security groups I created a circular dependency between the RDS security group and the auto

scaling security group. The autoscaling group needed ingress from the RDS security group and the RDS

security group needed ingress from the autoscaling group. Terraform (and CloudFormation) is unable to

create these as one depends on the other and visa versa. The way I solve this is to on the autoscaling group

remove the ingress from the RDS security group. Then as a separate resource, I create an

“aws_vpc_security_group_ingress_rule” allowing ingress from the RDS security group and attach this to

the autoscaling security group. This breaks the circular dependency and allows Terraform to create:

1. Autoscaling Security Group

2. RDS Security Group (including ingress from Autoscaling Security Group)

3. Ingress Rule attached to Autoscaling Security Group (with ingress from RDS security group).

resource "aws_security_group" "autoscaling_sg" {

 name = "autoscaling security group"

 description = "Allow inbound from ALB and RDS"

 vpc_id = aws_vpc.KenobiTFVPC.id

 ingress {

 description = "HTTP from ALB"

 from_port = 80

 to_port = 80

 protocol = "tcp"

 security_groups = [aws_security_group.alb_sg.id]

 }

 egress {

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

 tags = {

 Name = "AutoScaling Security Group"

 }

}

17

resource "aws_vpc_security_group_ingress_rule" "autoscaling-security-group-

ingress-from-RDS" {

 security_group_id = aws_security_group.autoscaling_sg.id

 description = "MySQL from RDS"

 from_port = 3306

 to_port = 3306

 ip_protocol = "tcp"

 referenced_security_group_id = aws_security_group.rds_sg.id

 depends_on = [aws_security_group.autoscaling_sg]

}

resource "aws_security_group" "rds_sg" {

 name = "rds_sg"

 description = "Allow RDS traffic from autoscaling group"

 vpc_id = aws_vpc.KenobiTFVPC.id

 ingress {

 description = "RDS from autoscaling EC2s"

 from_port = 3306

 to_port = 3306

 protocol = "tcp"

 security_groups = [aws_security_group.autoscaling_sg.id]

 }

 tags = {

 Name = "RDS Security Group"

 }

}

resource "aws_security_group" "alb_sg" {

 name = "alb_sg"

 description = "Security Group for Application Load Balancer"

 vpc_id = aws_vpc.KenobiTFVPC.id

 ingress {

 description = "HTTP from anywhere"

 from_port = 80

 to_port = 80

 protocol = "tcp"

 cidr_blocks = ["0.0.0.0/0"]

 }

 egress {

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

 tags = {

 Name = "ALB Security Group"

 }

}

18

6.5 AMAZON RDS MYSQL DATABASE

As with CloudFormation you need a database subnet group and then the database instance. As before

instead of hardcoding the username and password into the Terraform template I instead allowed the

database to use AWS Secrets Manager as a more secure way of creating a password.

resource "aws_db_subnet_group" "SubnetGroup" {

 name = "rds_subnet_group"

 subnet_ids = [aws_subnet.TFSubnetPublic1.id, aws_subnet.TFSubnetPublic2.id]

 tags = {

 Name = "My DB subnet group"

 }

}

resource "aws_db_instance" "TerraformKenobiRDS" {

 allocated_storage = 10

 db_name = "TerraformDB"

 engine = "mysql"

 engine_version = "5.7"

 instance_class = "db.t2.micro"

 username = "kenobi"

 manage_master_user_password = true

 parameter_group_name = "default.mysql5.7"

 skip_final_snapshot = true

 db_subnet_group_name = aws_db_subnet_group.SubnetGroup.id

}

6.6 APPLICATION LOAD BALANCER

With the ALB you need a listener to inform the ALB which ports to listen for traffic on, a target group – the

EC2 autoscaling group (the link is made in the autoscaling group resource) and the ALB itself.

resource "aws_lb" "KenobiTFALB" {

 name = "KenobiTF-alb"

 security_groups = [aws_security_group.alb_sg.id]

 subnets = [aws_subnet.TFSubnetPublic1.id, aws_subnet.TFSubnetPublic2.id]

 tags = {

 Name = "Terraform ALB"

 }

}

resource "aws_lb_target_group" "alb_target_group" {

 name = "Terraform-ALB-Target-Group"

 port = 80

 protocol = "HTTP"

 vpc_id = aws_vpc.KenobiTFVPC.id

 health_check {

 healthy_threshold = 3

 interval = 60

 unhealthy_threshold = 3

 matcher = "200"

 }

}

resource "aws_lb_listener" "alb_listener" {

19

 load_balancer_arn = aws_lb.KenobiTFALB.arn

 port = "80"

 protocol = "HTTP"

 default_action {

 type = "forward"

 target_group_arn = aws_lb_target_group.alb_target_group.arn

 }

}

6.7 CLOUDWATCH ALARM

The Cloudwatch alarm triggers if there are greater than or equal to 100 requests on the ALB in any 60

second period. It only requires one period of this traffic to go into alarm.

resource "aws_cloudwatch_metric_alarm" "cw_alarm"{

 alarm_name = "Kenobi ALB TF Alarm"

 comparison_operator = "GreaterThanOrEqualToThreshold"

 evaluation_periods = 1

 period = 60

 statistic = "Sum"

 namespace = "AWS/ApplicationELB"

 metric_name = "RequestCount"

 threshold = 100

 dimensions = {

 LoadBalancer = aws_lb.KenobiTFALB.arn

 }

}

20

7. DEPLOYMENT VIA TERRAFORM

7.1 TERRAFORM INITIALISATION

Terraform is initialised within the folder where the Terraform file is stored using the command terraform

init

21

7.2 APPLYING TERRAFORM TEMPLATE

Using the terraform apply command this finds the appropriate .tf file, uses the file and the local .tfstate file

to determine what additions, deletions and changes need making to the infrastructure.

22

7.3 TERRAFORM OUTPUTS

Terraform then works through creating the appropriate resources. Some are quicker than others. The

autoscaling group and the RDS database take the longest.

8. CONCLUSION

Both CloudFormation and Terraform can be used in this situation with the same outcome. Terraform is

more widely used in industry due to its multi-cloud capability however both skills are invaluable. This task

could have been more secure using a three-tier architecture, having only the ALB in a public subnet and

having the Autoscaling and RDS database however, that was outside of the task of the scope.

